skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shem‐Tov, Zvi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let be a commutative ring, and assume that every non‐trivial ideal of has finite index. We show that if has bounded elementary generation then every conjugation‐invariant norm on it is either discrete or precompact. If is any group satisfying this dichotomy, we say that has the dichotomy property . We relate the dichotomy property, as well as some natural variants of it, to other rigidity results in the theory of arithmetic and profinite groups such as the celebrated normal subgroup theorem of Margulis and the seminal work of Nikolov and Segal. As a consequence we derive constraints to the possible approximations of certain non‐residually finite central extensions of arithmetic groups, which we hope might have further applications in the study of sofic groups. In the last section we provide several open problems for further research. 
    more » « less